If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+25x-85=0
a = 1; b = 25; c = -85;
Δ = b2-4ac
Δ = 252-4·1·(-85)
Δ = 965
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-\sqrt{965}}{2*1}=\frac{-25-\sqrt{965}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+\sqrt{965}}{2*1}=\frac{-25+\sqrt{965}}{2} $
| 3h2+2h-16=0 | | (1/2N)+6=1/3n | | -1/2x-1/3x=1/6x | | 8/11=12/v | | 6=3+14/x | | 1b=1b-2 | | 1/2x+1=3/2x-8 | | 6u=45-3u | | 6(x-2)=2(3x-12) | | (x+4)^2=96 | | 3y-14=10-5y | | 5+2y=-13y+2y | | 18n+8=19n | | (2/3)z=7-(5/6)z | | 2(3z-4)=-2z+16 | | 10(5-n)-1=29 | | 7y+1=6y-5 | | 6x-5=3+2x | | -4(x-9)=2x+72 | | 18n+8=n19 | | 7x-3x+7=3(x-4)=12 | | 3r+9-2r=-12-5r | | y(y-30)+90=180 | | 11x-5(2x+1)=-2 | | x+54/12=1/4x | | 0.83(w+1)=-10 | | 4x+6=-x-39 | | 4(x-1)/2=2(x+1)/3 | | 6+j=18 | | 19=8x3-6x | | 3x+6-4x=-42 | | 13=-3x+28 |